Skip to main content

[October 2025] - Legacy Format Deprecation Notice + Realtime Data

BREAKING CHANGE: The legacy response format will be deprecated on November 1st, 2025.The modern format is significantly more complex with 97+ profile fields, nested models, and detailed type safety. Review the full type definitions before migrating.

🚀 New: Realtime Data Updates

All API endpoints now return realtime data:
  • Profile information is continuously updated
  • Company details reflect current status
  • Engagement metrics (connections, followers, posts) are live
  • Experience changes are tracked and identified in real-time
  • No more stale data - always get the most current information available

Affected Endpoints

  • GET /api/search - Search People
  • GET /api/search/deep_research/{job_id} - Get Deep Research Status
  • GET /api/enrich/linkedin - Get LinkedIn Profile

Migration Complexity Warning

The modern format contains significantly more data than the legacy format. A single profile response can include:
  • 97 profile fields (vs 10-15 in legacy)
  • 48 experience fields per job (vs 10-15 in legacy)
  • Complex nested objects for breakdowns and change tracking
  • Detailed company information including financials, stock data, geographic details
  • Structured date fields with separate year/month instead of formatted strings
  • Type-safe arrays instead of string representations
Plan accordingly - your parsing logic will need significant updates.

Implementation Details

Response Format Migration

The API supports both formats during the transition period:
  • Default (Modern): Full type-safe models with extensive data
  • Legacy: Simplified format using transformation functions
  • Migration Period: Both formats supported until November 1st, 2025

Complete Modern Response Example

  • Complete Modern Response
{
  "results": [
    {
      "profile": {
        // Basic Identity (10 fields)
        "id": "123456789",
        "name": "John Doe",                          // Legacy compatibility
        "full_name": "John Michael Doe",             // Primary modern field
        "first_name": "John",
        "first_name_initial": "J",
        "middle_name": "Michael",
        "middle_name_initial": "M",
        "last_name": "Doe",
        "last_name_initial": "D",
        
        // Professional Info (3 fields)
        "headline": "Senior Software Engineer at TechCorp Inc",
        "description": "Experienced software engineer specializing in ML",
        "summary": "Full professional summary with detailed background...",
        
        // Profile Images (2 fields)
        "picture_permalink": "https://static.licdn.com/aero-v1/sc/h/9c8pery4andzj6ohjkjp54ma2",
        "picture_url": "https://static.licdn.com/aero-v1/sc/h/9c8pery4andzj6ohjkjp54ma2",
        
        // Location Breakdown (8 fields)
        "location": "San Francisco, CA",             // Legacy compatibility
        "location_full": "San Francisco, California, United States",
        "location_country": "United States",
        "location_city": "San Francisco",
        "location_state": "California",
        "location_country_iso2": "US",
        "location_country_iso3": "USA",
        "location_regions": ["Americas", "Northern America", "AMER"],
        
        // LinkedIn Data (2 fields)
        "linkedin_url": "https://www.linkedin.com/in/johndoe",
        "linkedin_shorthand_names": ["johndoe"],
        
        // Engagement Metrics (5 fields)
        "connections_count": 500,
        "followers_count": 1200,
        "post_count": 15,
        "posts": "Recent posts content as concatenated string...",
        "liked_posts": "Liked posts content as concatenated string...",
        "recommendations": "Recommendations as concatenated string...",
        "recommendations_count": 8,
        
        // Work Status (3 fields)
        "is_working": 1,                             // 0/1 or true/false
        "is_decision_maker": 0,                      // 0/1 or true/false
        "total_experience_duration_months": 48,
        
        // Experience Breakdowns (2 complex arrays)
        "total_experience_duration_months_breakdown_department": [
          {
            "department": "Engineering and Technical",
            "management_level": null,
            "total_experience_duration_months": 48
          }
        ],
        "total_experience_duration_months_breakdown_management_level": [
          {
            "department": null,
            "management_level": "Senior",
            "total_experience_duration_months": 24
          }
        ],
        
        // Active Experience Details (5 fields)
        "active_experience_company_id": 12345,
        "active_experience_title": "Senior Software Engineer",
        "active_experience_description": "Working on ML systems...",
        "active_experience_department": "Engineering and Technical",
        "active_experience_management_level": "Senior",
        
        // Skill Categories (5 fields)
        "skills": ["Python", "JavaScript", "Machine Learning"],
        "inferred_skills": ["Python", "ML", "Data Science"],
        "historical_skills": ["Java", "C++", "PHP"],
        "interests": ["AI", "Machine Learning", "Distributed Systems"],
        "services": "Consulting, Development, Technical Leadership",
        
        // Education Summary (2 fields)
        "last_graduation_date": 2022,
        "education_degrees": ["Computer Science", "MBA"],
        
        // Salary Projections (16 fields!)
        "projected_total_salary": 150000.0,
        "projected_base_salary_p25": 120000.0,
        "projected_base_salary_median": 140000.0,
        "projected_base_salary_p75": 160000.0,
        "projected_base_salary_period": "ANNUAL",
        "projected_base_salary_currency": "USD",
        "projected_base_salary_updated_at": "2024-01-01",
        "projected_additional_salary_period": "ANNUAL",
        "projected_additional_salary_currency": "USD",
        "projected_additional_salary_updated_at": "2024-01-01",
        "projected_total_salary_p25": 130000.0,
        "projected_total_salary_median": 150000.0,
        "projected_total_salary_p75": 170000.0,
        "projected_total_salary_period": "ANNUAL",
        "projected_total_salary_currency": "USD",
        "projected_total_salary_updated_at": "2024-01-01",
        "projected_additional_salary": [
          {
            "projected_additional_salary_type": "Bonus",
            "projected_additional_salary_p25": 10000.0,
            "projected_additional_salary_median": 15000.0,
            "projected_additional_salary_p75": 20000.0
          }
        ],
        
        // Content Statistics (6 fields)
        "patents_count": 2,
        "patents_topics": ["AI", "Machine Learning"],
        "publications_count": 5,
        "publications_topics": ["Software Engineering", "AI"],
        "projects_count": 3,
        "projects_topics": ["Web Development", "ML"],
        
        // Metadata Timestamps (7 fields)
        "created_at": "2023-01-01T00:00:00Z",
        "updated_at": "2024-01-01T00:00:00Z",
        "checked_at": "2024-01-01T00:00:00Z",
        "changed_at": "2024-01-01T00:00:00Z",
        "experience_change_last_identified_at": "2024-01-01T00:00:00Z",
        "op_created_at": "2023-01-01T00:00:00Z",
        "op_updated_at": "2024-01-01T00:00:00Z",
        
        // Change Tracking Arrays (4 complex arrays)
        "profile_root_field_changes_summary": [
          {
            "field_name": "headline",
            "change_type": "updated",
            "last_changed_at": "2024-01-01T00:00:00Z"
          }
        ],
        "profile_collection_field_changes_summary": [
          {
            "field_name": "experience",
            "last_changed_at": "2024-01-01T00:00:00Z"
          }
        ],
        "experience_recently_started": [
          {
            "company_id": 12345,
            "company_name": "TechCorp",
            "company_url": "https://techcorp.com",
            "company_shorthand_name": "techcorp",
            "date_from": "2024-01",
            "date_to": null,
            "title": "Senior Software Engineer",
            "identification_date": "2024-01-01T00:00:00Z"
          }
        ],
        "experience_recently_closed": []
      },
      
      "experience": [
        {
          // Position Details (6 fields)
          "active_experience": 1,                    // 0 or 1
          "position_title": "Senior Software Engineer",
          "department": "Engineering and Technical",
          "management_level": "Senior",
          "location": "San Francisco, CA",
          "description": "Working on ML systems and distributed architecture...",
          
          // Date Information (7 fields)
          "date_from": "January 2022",               // Human readable
          "date_from_year": 2022,                    // Separate integer fields
          "date_from_month": 1,
          "date_to": null,                           // Null for current
          "date_to_year": null,
          "date_to_month": null,
          "duration_months": 24,                     // Pure integer
          
          // Company Basic Info (4 fields)
          "company_id": 12345,                       // Pure integer
          "company_name": "TechCorp Inc",
          "company_type": "Privately Held",
          "company_founded_year": 2010,
          
          // Company Engagement (2 fields)
          "company_followers_count": 500,
          "company_website": "https://techcorp.com",
          
          // Company Social Media (4 fields)
          "company_facebook_url": "https://facebook.com/techcorp", // Can be string or array
          "company_twitter_url": ["https://twitter.com/techcorp"],
          "company_professional_network_url": null,
          "company_linkedin_url": "https://linkedin.com/company/techcorp",
          
          // Company Size & Industry (4 fields)
          "company_size_range": "201-500 employees",
          "company_employees_count": 350,
          "company_industry": "Software Development",
          "company_categories_and_keywords": ["software", "technology", "saas"],
          
          // Company Financials (6 fields)
          "company_annual_revenue_source_1": 50000000.0,
          "company_annual_revenue_currency_source_1": "USD",
          "company_annual_revenue_source_5": 50000000,
          "company_annual_revenue_currency_source_5": "USD",
          "company_employees_count_change_yearly_percentage": 15.5,
          "company_last_funding_round_date": "2023-01-01",
          "company_last_funding_round_amount_raised": 10000000,
          
          // Company Geographic Details (9 fields)
          "company_hq_full_address": "123 Main St, San Francisco, CA 94105, US",
          "company_hq_country": "United States",
          "company_hq_regions": ["Americas", "Northern America", "AMER"],
          "company_hq_country_iso2": "US",
          "company_hq_country_iso3": "USA",
          "company_hq_city": "San Francisco",
          "company_hq_state": "California",
          "company_hq_street": "123 Main St",
          "company_hq_zipcode": "94105",
          
          // Company Metadata (4 fields)
          "company_last_updated_at": "2024-01-01",
          "company_stock_ticker": [
            {
              "exchange": "NASDAQ",
              "ticker": "TECH"
            }
          ],
          "company_is_b2b": 1,                       // 0 or 1
          "order_in_profile": 1
        }
      ],
      
      "education": [
        {
          // Basic Education (3 fields)
          "degree": "Master of Science",
          "description": "Focus on Machine Learning and Distributed Systems",
          "institution_url": "https://university.edu",
          "institution_name": "State University",
          
          // Institution Geographic Details (9 fields)
          "institution_full_address": "456 University Ave, Berkeley, CA 94720, US",
          "institution_country_iso2": "US",
          "institution_country_iso3": "USA",
          "institution_regions": ["Americas", "Northern America", "AMER"],
          "institution_city": "Berkeley",
          "institution_state": "California",
          "institution_street": "456 University Ave",
          "institution_zipcode": "94720",
          
          // Education Timeline (2 fields)
          "date_from_year": 2017,
          "date_to_year": 2019,
          
          // Additional Info (2 fields)
          "activities_and_societies": "Computer Science Club, AI Research Group",
          "order_in_profile": 1
        }
      ],
      
      "languages": [
        {
          "language": "English",
          "proficiency": "Native",
          "order_in_profile": 1
        },
        {
          "language": "Spanish",
          "proficiency": "Professional",
          "order_in_profile": 2
        }
      ],
      
      "awards": [
        {
          "title": "Employee of the Year",
          "issuer": "TechCorp Inc",
          "description": "Outstanding contribution to ML infrastructure",
          "date_year": 2023,
          "date_month": 12,
          "order_in_profile": 1
        }
      ],
      
      "certifications": [
        {
          "title": "AWS Solutions Architect",
          "issuer": "Amazon Web Services",
          "date_from_year": 2022,
          "date_from_month": 6,
          "date_to_year": 2025,
          "date_to_month": 6
        }
      ],
      
      "organizations": [
        {
          "organization_name": "IEEE Computer Society",
          "position": "Member",
          "description": "Active member participating in ML conferences",
          "date_from_year": 2020,
          "date_from_month": 1,
          "date_to_year": null,
          "date_to_month": null
        }
      ],
      
      "patents": [
        {
          "title": "Distributed Machine Learning System",
          "description": "Method for optimizing ML training across distributed nodes",
          "status": "Granted",
          "date_year": 2023,
          "date_month": 8
        }
      ],
      
      "projects": [
        {
          "name": "ML Infrastructure Platform",
          "description": "Built scalable ML training and inference platform",
          "date_from_year": 2022,
          "date_from_month": 1,
          "date_to_year": 2023,
          "date_to_month": 12
        }
      ],
      
      "publications": [
        {
          "title": "Optimizing Distributed ML Training",
          "description": "Research on improving efficiency of distributed machine learning",
          "publisher_names": ["IEEE Transactions on Parallel and Distributed Systems"],
          "date_year": 2023,
          "date_month": 3
        }
      ],
      
      "github_repos": [
        {
          "name": "ml-distributed-trainer",
          "summary": "Open source distributed ML training framework",
          "stars": 245,
          "contributions_count": 156
        }
      ],
      
      "courses": [
        {
          "organizer": "Stanford University",
          "title": "Advanced Machine Learning",
          "order_in_profile": 1
        }
      ],
      
      "match_data": {
        "similarity_score": 0.95,
        "matched_criteria": ["machine learning", "senior engineer", "python"]
      }
    }
  ],
  "total": 1,
  "query": "senior machine learning engineers at tech companies",
  "search_id": "550e8400-e29b-41d4-a716-446655440000"
}
Field Count Summary:
  • Profile: 97 fields across all categories
  • Experience: 48 fields per job including 30+ company-specific fields
  • Education: 15 fields including detailed institution geography
  • Plus: Languages, Awards, Certifications, Organizations, Patents, Projects, Publications, GitHub repos, Courses